
 Data Request Timing 
Comparison of 3 protocols

Mar 5, 1991

The VME Local Station software supports three data acquisition protocols. The first is the 
Classic protocol, which was the original protocol developed in 1982. On the token ring 
network, it uses a special SAP to distinguish it from Acnet header-based protocols. The other 
two protocols supported are based upon the use of the Acnet header that supports general 
task-task communication across a single network. This note describes the performance by the 
local station software in its support of all three protocols.

The Classic protocol is based upon listypes and idents, two abstract specifiers which 
characterize control system data requests. The design is targeted for distributed systems, in 
which a single network of local stations connect to the control system signals of a part of an 
accelerator and contain a local database for their own parts. Because of this, these systems can 
operate in the absence of a centralized host system. Any host can participate by using the 
data request protocols.

The second is the DZero protocol, which was developed to satisfy the needs of the D0 control 
system. It is an evolution of the Classic protocol in that its design is also based upon listypes 
and idents.

The other is the Accelerator protocol, developed for use with the Fermilab accelerator control 
system. It was designed to work only with a centralized database. The user program running 
on a Vax console is given a suite of DPxxx routines that hide the central database accesses 
used to build a data request.

Two sets of timings were made for each of the three protocols. One was made from the 
requester’s point of view; the other was made from the replier’s point of view. The timing 
was measured by software using a timer of 0.5 msec resolution in the first case and by 
observing signals available on a front panel connector of the Crate Utility board that show 
each task’s activity in the second.

The example used in the measurements was a data request for readings and setting words of 
a number of analog channels from one other local station. The number was varied to get the 
incremental timing on a per channel basis. The test programs are local station console page 
applications designed for testing each protocol.

The first test measures the time from just before a one-shot request is made until the time that 
the answers are available in the application’s data arrays. For a minimal data request, the 
timing is about 5 msec independent of the protocol. The timings for a number of channels > 1 
is as follows:

Protocol #chans One-shot, msec Per channel, µs
Classic 1 5.5

51 10.0 90

DZero 1 5.5
51 8.5 60

Accel 1 4.5
51 23.5 380



A reason for the longer time per channel in the Classic protocol compared to the DZero 
protocol is that the ReqData routine called by the test application includes a “data server” 
functionality for local requests, so there is work to be done before the data request message is 
prepared for the network. In the other two cases, the test program prepares the network 
message before the timing starts.

The second test measures the additional time spent in the Update Task due to updating the 
answers in fulfilling the repetitive data request. It does not include any time for transmitting 
the results across the network. It represents only the additional load on the cpu in producing 
a set of answers to the data request.

Protocol #chans 15 Hz, msec Per channel, µs
Classic 1 0.4

51 0.6 4

DZero 1 0.4
51 0.6 4

Accelerator 1 0.4
51 2.0 32

The increased time used by the accelerator protocol is because it was not designed for 
efficient processing. The key concept that is missing is that of specifying an array of idents to 
be processed under a given listype.

Data Request Timing p. 2


